

SAM C Users Manual Page 1

SAM C

User Manual
April 1995

CONTENTS
PAGE

PREFACE ... 3

INTRODUCTION .. 4

GETTING STARTED ... 4

FIRST STEPS IN C ... 5

INTEGRATED DEVELOPMENT EDITOR (IDE) .. 14

FILE .. 14

EDIT ... 16

DEBUGGER ... 19

COMPILE .. 21

OPTIONS ... 22

BROWSER ... 26

THE C LANGUAGE ... 27

REMARKS ... 27

IDENTIFIERS .. 27

KEYWORDS .. 27

CONSTANTS ... 28

SIZE OF STANDARD TYPES ... 28

REGISTER MODIFIER ... 29

AUTOMATIC TYPE CONVERSION ... 29

EXPRESSIONS .. 29

DECLARATIONS ... 29

_INTERRUPT .. 30

INITIALISATION ... 30

SAM C Users Manual Page 2

COMPOUND STATEMENT .. 31

EXTERN MODIFIER ... 31

THE PRE-PROCESSOR ... 32

#DEFINE .. 33

#INCLUDE ... 33

#IFDECLARED, #IFDEF, #IFNDEF, #IF ... 33

#ASM, #ENDASM ... 34

#PRAGMA ... 34

STACK POINTER AND FUNCTION INTERFACE 35

USING THE REGISTERS .. 36

MEMORY SHARING ... 36

PROGRAM ARGUMENTS AND THE RUNTIME FILE 37

APPENDIX A - STANDARD SAM LIBRARIES .. 38

STDIO.H ... 38

CTYPE.H .. 43

GRAPHICS.H .. 43

SYSTEM.H ... 46

STRING.H .. 47

STRING2.H .. 48

STDLIB.H ... 49

CONIO.H .. 50

APPENDIX B - ERROR MESSAGES ... 51

APPENDIX C - PRECEDENCE OF OPERATORS 56

APPENDIX D - FILES ON SAM DISC ... 57

APPENDIX E - LIBRARY HEADER FILES .. 58

Readme file from SAM C disk .. 63

While every care has been taken in the production of this manual and the software it describes neither the
author nor the publisher will be held liable for any mistakes or omissions nor be responsible or held liable for
any damages that may arise from the purchasor's use of, or inability to use, this software and manual. No
representations are made as to the suitability of the software for a particular purpose or for its use on any
particular hardware

SAM C Users Manual Page 3

SAM C

Preface

C is one of the most powerful, yet usable, programming languages available for any
computer. Combined with the portability that allows you to run programs on your SAM that
were written on (and for) dozens of other machines (PC, Amiga, Atari, Unix ...) you have a
very resourceful tool now running on your SAM. I hope this manual helps you to make the
most of it, and that the development of C will help SAM programmers become even more
prolific and proficient.

We would be very interested to see what you can do with SAM C - if you create a program,
routine or library, please send it in whether it be in regard to commercial publication,
inclusion on an issue of FRED so others can learn from your code, or simply to show us what
SAM C is capable of!

We regret that we cannot take telephone questions relating to any problems you have when
programming in SAM C, at this point no-one else is available for advice on the phone either.
If you have a problem, send it to FRED with a printout of the program (and preferably a
copy on disc) and a SAE. We will try to answer your query as quickly as possible but cannot
make any guarantee as to how long this could take, or to whether we are actually able to
solve the problem (we're just the publishers, you programmers are supposed to be the clever
ones!). Unless you state otherwise we may use your problem / code in an issue of FRED
magazine to demonstrate the solution to others.

Any product developed with the aid of SAM C by a purchasor of SAM C may be published
independantly provided that it carries a prominent message stating that SAM C was used in
its development.

The C compiler, libraries included, example programs and all related code are copyright
1995 FRED Publishing. Marian has worked extremely hard over the last few years to
develop SAM C, please don't rip him off - let your friends buy their own copy.

SAM C and standard libraries by Marian Krivos.
Manual by Marian Krivos, Adrian Parker and Colin Macdonald.
Manual typesetting by FRED Publishing.

Those responsible for testing until all hours in the morning are : Bob Brenchley, Carol
Brooksbank, Colin Macdonald, Adrian Parker, Chris White and Nev Young.

SAM C Software and Manual © 1995 FRED Publishing. All Rights Reserved.

SAM C Users Manual Page 4

Introduction

Welcome to the world of 'SAM C'. You now have the facility to produce utilities, games,
business software etc on your SAM in the most flexible, professional language available on
any computer system today. C (and SAM C) gives you the flexibility (and much of the
speed) of machine language, whilst allowing you the convenience of a high level language.
However, before we get into the complexities of this program, let's try to get an idea of how
it all started.

Way back in the mists of time (well, 1978 to be exact), when computers that could only do
one hundredth of the capabilities of the one in front of you took up a room larger than the
one you're sitting in, two system programmers called Brian Kemighan and Dennis Ritchie
produced a new programming language. The language was based on an older language
called BCPL (Basic Combined Programming Language), which had previously had a large
influence on a language called 'B'. So, logically, the new language was called 'C'. The
language was compiled - ie the program was converted, once only, to machine language
BEFORE the program was run. The actual program that is written is known as the 'source
file' and the final executable code as the 'object file'. Many versions of the language were
produced on many computer systems and this led to other systems being produced. An
interpreted version of C was produced in the early 80's, closely followed by a version that
converted the high level C language to assembler mnemonics, ready to be assembled. Most
versions of C will also assemble these mnemonics into ready-to-run machine code - as does
SAM C!

Some of you might have heard of the C++ language - this is an object-orientated
programming (OOP) version of C. SAM C is not object-orientated - it is a version of the
conventional C, which is a programming style familiar to you all.

So now that we know where we are, the rest of this manual is devoted to explaining the
different elements of this program that allow you to produce your own software.

Getting Started

For your convenience, the disc enclosed has riot been protected. Because C will need to read
files from this disc as well as save to it, it is very important that you make at least one
working copy of the disc. You can save MasterDOS (you may encounter problems if you use
MasterDOS and MasterBASIC - just use MasterDOS on its own) over the SAMDOS on your
working copy to give you improved performance (particularly if you also have the 1
Megabyte memory expansion). You are now free to adjust the default settings files and save
your source files to the disc without fear of losing any data. We would suggest producing at
least one working copy for each type of programming you undergo (ie one disc for games,
one for utilities, one for additional libraries etc).

If your master disc does become corrupted, send it along with £1 to cover costs and we will
send you a replacement.

Any amendments to this manual will appear on the disc with the filename README.

SAM C Users Manual Page 5

First Steps In C

I'll be honest. C didn't become one of the most popular programming languages in the world
by being simple. And considering there are hundreds of books on how to learn C, it's a bit
much to expect a complete beginner-to-expert guide here. What I will do is explain the very
basics, and more importantly, provide you with the information about how to learn the rest.
If you want to learn C, you must get access to a book on the subject - your local library is
bound to have at least a couple, although from experience the following are recommended :

C : The Complete Reference by Herbert Schildt. Published by Osbourne McGraw Hill.
Teach yourself C by Herbert Schildt. Published by Osbourne McGraw Hill.
The C programming language by B.Kernighan and D.Ritchie. Published by Prentice Hall.
C for Dummies. Published by IDG Books.

If you can't find any of the books in your local shops / library, a reliable mail order book
company is Derwent Bookshop, who can be reached on 01900-62503. They currently stock
Teach yourself C at £ 19.99.

You should find it worthwhile reading the following few pages about some of the basics of C
whether or not you intend to get a book on the subject.

C is a relatively simple language, it contains very few commands (only about two dozen in
SAM C!) it doesn't even allow you to input anything from the keyboard or output anything to
the screen. The power of C comes with the ability to make use of libraries. Fortunately, most
C compilers these days come with a variety of standard libraries which allow other features
like input and output. SAM C is no exception. Although using libraries themselves is very
simple, it does take time to learn about the functions in a library - but this is something you
can do as and when you need the extra functions.

I’ll assume everyone is familiar with SAM BASIC and you should find you can relate a lot of
the logic and methods in C to it.

Unlike BASIC, lines do not have such importance in C - a particularly long line can extend
over several lines in the editor. For this reason, all instructions are separated by the
semicolon (;).

All programs have a simple structure:

main()
 {
 Declarations
 Instructions
 }

It's not as tricky as it appears. C programs are made up of functions (sub-routines, like
Procedures in BASIC), and the starting function is called main(). This is automatically called
when you run the program. The parenthesis 0 after main() usually contain a list of
parameters to be passed to the function, however, you normally won't be passing any to
main().

The curly braces { } (press Symbol-F and G) are used to show the start and end of a
compound statement block (see page 31) - in this case the block is a function.

SAM C Users Manual Page 6

All variables have to be declared before use. eg :

int a,b;

declares a and b to be integers. An integer is a whole number between -32768 and +32767
inclusive. For larger numbers you can use an unsigned integer which can hold whole
numbers from 0 to 65535. The other variable type you will also be using a lot is char, which
is simply a character. Because of the flexibility of C, the different variable types are fairly
inter-changable. For example, you could define an integer, assign it a value, then simply print
out it's ASCII equivalent as if it was a character!

Assignment is done with =, as in BASIC, but without the LET :-

a=1;

Sets a to 1.

The if statement is :-

 if (condition) {action} else {other action}

Compared to BASIC which is :-
 IF condition THEN action ELSE other action

C EXAMPLE - IF
 if (a==1) {b=3;} else {b=4;}

Note that the else (and it's associated statement block) could be left out (as in BASIC) and
that while the assignment operator is =, the equality operator is ==. Other comparison
operators are != for not equal to, < and > for less than and greater than, <= and >= for less
than or equal and greater than or equal.

Logical operators are :

BASIC AND OR NOT
 C && || !

(the | symbol is produced by pressing Symbol-9)

So, the BASIC line IF a=3 AND b>4 THEN LET x=7

in C, becomes if (a==3 && b>4) {x=7;}

In actual fact, if there is just one instruction as a result of the if (as in the above example)
then the curly braces are not required.

SAM C Users Manual Page 7

The for...next loop is :-
 for (Start condition ; End condition ; Increment) { actions }

where any number of instructions can be between the curly braces

The BASIC equivalent is:-
 FOR x=Start TO End STEP increment
 actions
 NEXT x

C EXAMPLE - FOR
 int n;
 for (n=1 ; n<=10 ; n++) { printf ("hello"); }

Forget about n++ (it just increments n by one) and printf for the moment - the above
 loop will print hello on screen ten times. Because the condition you set does not
 have to be related to the start condition, you can easily do an infinite loop :

for (n=1; ; n++) { } or even for(; ;) {} Because the end conditions equate to 0

The While...Do loop is :-
 while (condition) { actions }

The BASIC equivalent is :-
 DO WHILE (condition)
 actions
 LOOP

C EXAMPLE - WHILE
 while (7>6) { }

is, of course, another infinite loop because 7 will always be greater than 6.

The equivalent of the Repeat...Until loop also makes use of the while keyword :-
 do { actions } while (condition);

So, the infinite loop above could also be done by :-
 do {} while (7>6);

For something as simple as this, the outcome is identical, but the do. whil loop performs the
actions first and then checks to see if it should exit. The normal while loop checks first and
therefore need not do any iterations of the actions.

Creating your own functions is very easy - it's the same as writing the main() function.

ie :-

main()
}

SAM C Users Manual Page 8

int a,b,c;
if (a==b && a!=6 && a>3) a=99;
if (a==c && a!=6 && a>3) a=95;

}

This assigns a to 99 providing it was equal to b, wasn't 6 and was greater than 3. If a was
then the same as c, not 6 and greater than 3 then a becomes 95.

If we wanted to use that small testing routine in other places, rather than typing it out several
times we can create a function :-

int TESTTWO (int p, int q)
{

if (p==q && p!=6 && p>3) { return 1; }
 else { return 0; }

main()
{

int a,b,c
if (TESTTWO(a,b)==1) a=99;
if (TESTTWO(b,c)==1) a=95;

}

Which will produce exactly the same results except that the function TESTTWO is called
twice. You will have noticed the way that parameters are passed to functions - in the calling
statement they're simply put in parenthesis after the function name (the parenthesis must be
there whether or not you're passing any parameters) and they're declared in a similar fashion
in the functions itself - remembering of course to tell the compiler what type they are.

Although variables cannot be passed back in the same way they are passed to the function, by
specifying the type of variable to be returned before the function name (use void if you don't
want it to return any value. If no type is declared, the default is int) and then using return to
select which variable you want returned, you can use functions just like functions in BASIC.
Passing more than one value back is more complicated, and I suggest you look up 'pointers'
in a C book.

The all-important comments can be placed inside the source using // to comment off just until
the end of that line, alternatively, /* will start a comment and */ will end it - see page 27 for
examples.

The usual + - * / are addition, subtraction, multiplication and division as expected. Although
C has a few usual shorthand methods :-

instead of using a=a+1; you can use a++; which has the same effect. This can be used in the
middle of calculations as well, and just for confusion's sake, you can put ++ either before or
after the variable you want to increment depending on whether you want to increment before
or after the value of the variable is read.

ie

SAM C Users Manual Page 9

a=3;
b=5;
c=b - a++; // With parenthesis this should be c=(b - (a++)) for neatness

Will give c the value 2, and a the value 4. Because a was increment after it's value was used
in the calculation.

Whereas with the same initial values (a=3 and b=5),

c=b - ++a; // or c=(b - (++a))

Will finish with a being 4 but c being 1.

The operator -- will work in the same way, but decrementing the value instead.

I wasn't going to go into any library functions, but I feel obliged to help you write the typical
first program - printing "Hello World" onto the screen. Admittedly, in BASIC this is a very
simple task. Although C allows you much more flexibility, the complexities do bog down the
very simple tasks.

#include "stdio .h" // note the three spaces

main()
{

printf ("Hello World\n");
}

The #include line, lets you use the functions contained in that library - for details on the rest
of the functions in stdio, see page 38.

main() as we know, defines the starting function and the code in it is contained within the
curly braces.

printf Main calls the library function printf to output whatever follows. The \n is the
newline (CR) character and tells printf to move to the start of the next line.

The above program will run on SAM C (you need to be careful of any spaces in between
stdio and the .h). Just type it into the editor, press ESC to return to the main menu. Press F9
to compile it. The compiler will load in the libraries you've accessed, compile the code into
assembler, then assemble the final code into an executable program. If either the compiler or
assembler discovered any errors, go back and correct them, then try compiling it again.

Once the compilation has been completed (you'll be told the length of the object code), press
a key to return to the main menu, then R to run the code.

With a bit of luck the words Hello World will be printed at the top left of your screen.
Subsequent returning to the menu and running the code again will move each successive
Hello World down the screen by a line - the result of your \n in the printf statement.

You've just written your first C program! Try experimenting with printing out variables using
the %d operator (see page 39) and reading in values using scanf (see page 40)

SAM C Users Manual Page 10

You should be warned that C is an extremely powerful language, and you can do anything in
C that is possible in machine code. You can assign memory directly and play around with the
lowest level of your SAM, so any bugs that the compiler does not detect MAY CAUSE
YOUR COMPUTER TO RESET - SAVE YOUR WORK REGULARLY. There is a switch
in the Compile menu to save the source every time before compilation - it is worth using.

Although C will try to detect syntax errors in your code, it does assume that you know what
you are doing and let you off with doing some unusual operations. Until you get used to
knowing where to look for bugs, double check all of your code – nonobvious mistakes
include forgetting the semicolon at the ends of instructions, getting the order of parameters
mixed up, wrong assumptions about what C will do with calculations - check your
precedence!

Miscellaneous notes about C

Instead of using a=a+5 or b=b-7, C allows you to use a+=5 and b-=7 instead. The same can
also be done for multiply and divide by using *= and /=.

The bitwise operators are as follows :-

& AND
| OR
^ XOR
~ NOT (One's complement)
>> x Shift right by x bits
<< x Shift left by x bits

Declaring arrays is done by int a[10] which will give TEN variables - a[0], a[1], a[2] ... a[8]
and a[9]. The dimensioning and accessing of the array must be done in square brackets [] ie.

int a(10];
a[0]=23;
a[9]=98;

The square brackets are obtained by pressing Symbol-R and Symbol-T.

Normal parenthesis () can be used to increase the precedence (see Appendix C) of part of a
calculation, in the same way as BASIC does.

C applies boolean logic to relational operators ie if a is 5, a==5 will evaluate as TRUE, and
return 1, whereas a==6 is FALSE and returns 0.

An array can be assigned a whole string (which must be done using strcpy - see page 47),
with the string in double quotes ", and a string is automatically terminated by the NULL
symbol \0. When assigning single characters to a char variable, single quotes should be used
to avoid the compiler placing \0 after it in memory - which could be almost anywhere!

The sizeof unary operator returns the size of the variable (ie a char would return 8, an int
would return 16). This can be useful for defining arrays whilst the code is running.

SAM C Users Manual Page 11

if statements are usually of the form

if (condition) action else other action

but if we are only using single expressions as the actions, we can use

condition ? action : other action

ie

(a==b) ? printf("equal") : printf("not equal");

In addition to the standard data types that come with C, you can make up your own. The two
that SAM C allow are structures, unions and enumerations. Both are essentially just a
combination of the already known types, but they can prove extremely useful.

Structures allow you to group together related pieces of information while still being able to
reference them under one name - for example, it is possible to define variables called name,
address, phone number and age but to keep things organised, we can define these variables as
part of a larger data type - a struct. ie

struct person {

char name[10];
char address[50];
char phone[10];
int age;
};

This has only defined the data type - no variables have been declared and no memory has
been allocated. To do this, we set up a variable just like we set up any variable :

struct person person_info;

Which does define the variable person_info of type struct person. To access the information
we use the dot (.) operator ie person_info.age=21; Of course, arrays of structs can be set up,
and if you really get into things you can access a struct through a pointer to it via the ->
operator. The operators for normal pointers and address operators are * and & respectively - I
recommend you read a very good book on C to get an understanding of such things –
although when you do , you'll find SAM C copes admirably.

Unions and enumerations are defined in the standard way using the keywords union and
enum.

SAM C Users Manual Page 12

Another simple program :-

To pause one second, print a message on screen, then wait until a key is pressed.
#include "system .h" // include system library
extern int pause (int a); // prototype for pause function

ma() {
pause (50); // call pause function for 50 50ths (1s)
printf("\a\017\005Press any key"); // PRINT AT 17,5;"Press any key"
while (!kbhit()); // Loop (round an empty loop) while

} // kbhit returns 0 (note the !)

#include "system .c"

Although THERE ARE NO SITUATIONS WHERE GOTO IS REQUIRED - C is a
structured language and goto should not be used (some versions of C actually prohibit the use
of goto, but SAM C does allow it), the use of goto is :

label:

goto label

ie. to change the above while loop to use goto, we can do:

restart: if (!kbhit()) goto restart;

You can have a look at the example programs on the SAM C disc, but because libraries are
simply C code themselves, you can have a look at all the standard libraries on the disc as well
(although there is a lot of assembly code used for optimum speed).

For performing numerous tests on a single variable, an if-then-else ladder will do the task,
but a simpler way is to use the switch statement. A variable is successively compared to a
list, when a match is found a set of instructions are executed.

switch(ch) { // ch is the variable to be tested

case 1: // case statements without a break "drop through" so all
case 2: // these cases have common statement sequences
case 3:

b=4;
break; // break terminates a sequence of instructions

case 4:
b=2;
break;

default: // default is used if no matches are found
b=17;

 }
In the above example, if ch is 1,2 or 3 then b becomes 4. If ch is 4, b becomes 2. If ch is
anything else, b becomes 17. break is optional for "drop through" as above, and default is
optional depending on whether you need a default value.

SAM C Users Manual Page 13

The general use of break is to force immediate termination of the current sequence. Here are
two ways to force early exit from a simple loop :-

for (n=1 ; n<100 ; n++) for (n=1 ; n<100 ; n++)

{ if (n+a == 199) n=100; } { if (n+a ==199) break; }

Both programs do exactly the same, but the one with break is preferable because if the size of
the loop is changed, nothing else needs changing. Whereas with the left example, if there
were several 'early exit' tests and the length of the loop is changed, all the n=100; statements
would also need to be changed.

continue forces the next iteration of a loop without executing any code - here is an example
of a simple routine that only prints even numbers :-

for (n=1 ; n<100 ; n++)
{
if ((n/2)*2!=n)continue;
printf("%d ",n);
}

There are four basic storage class specifiers which can be applied to most variable types in C.
These are : auto, extern, register and static.

auto is the default specifier and the one you will use most often - without even knowing it!
When you assign a variable ie int a; it is, by default, an auto specifier.

extern is used when you are using separate modules and module. See the EXTERN
MODIFIER section.

register makes use of the CPU's registers to speed up variables that are frequently accessed.
See the REGISTER MODIFIER section.

static variables provide a more permanent storage method. Normally, every time a function is
called, variables declared in that function are created. When the function ends, those local
variables are destroyed. Declaring a variable to be static creates permanent storage space for
it, meaning that every time you come back to the function, the variable is still there - along
with the same value it had the last time you called that function!

While SAM C supports the normal use of pointers by * and &, it should be noted that
double-pointers (a pointer to a pointer to a variable) are NOT allowed. Pointers allow more
than one variable to be returned from a function as well as many other useful techniques like
creating linked lists and binary trees of an unknown length. While pointers are a very
important feature of C to more advanced programmers. as a beginner to C you will not need
to use them until you start coding more complicated programs. The explanation behind
pointers can be tricky, so I recommend getting hold of a good C book.

SAM C Users Manual Page 14

Integrated Development Environment (IDE)

The IDE is the tool that you use to edit, compile and finally debug your software. This is
where most of your work is done. The IDE is controlled from a group of menus from which
options may be selected in several ways :

the underlined letter in the option name may be pressed;

the cursor may be positioned over the required option using either a joystick, keys or SAM
Mouse;

Certain options (such as Directory) need room to give the user a list of alternatives to choose
from. In this case a LIST BOX will appear and the alternatives will appear in it. The LIST
BOX contents may be shifted up and down by using the UP/DOWN cursor keys, LEFT
or ESC to exit, and RIGHT, RETURN or '0' to select the current (highlighted) item.

If you find yourself with an unwanted item, or wrongly selected option, pressing ESC at any
point will take you back to the previous level of the menu system.

At some points you will find that the IDE requires you to type in a name (eg a filename to
save or load). The text cursor position will be shown as Enter your text and then press
RETURN. Pressing ESC will remove the text request. If the option has been selected
previously, the old text will re-appear when the option is next selected. The whole input line
may be cleared by pressing the EDIT key. Hexadecimal numbers may be entered by
prefixing them with '&', just as in BASIC.

When in the IDE main option menu, the screen shows a title bar at the top of the screen.
This is the main menu. It has six headings - File, Editor, Debug, Compile, Options and
Browser. At the bottom of the screen the name of the current source file is shown along with
the size of the workspace for an asm file and the memory remaining for the source listing.
The various sub-menus and headings will now be discussed in turn.

File

File

This option controls all access to the disc drive and file handling from the IDE.

Load [F3]

As its name suggests, this option allows you to type in the name of a file to be loaded. This
option may be selected quickly by pressing the 'hot-key' 'F3'. A dialogue box will appear for
you to type in the required file name. If an error occurs in the attempt to load the file, an
error message will be generated and the load aborted.

SAM C Users Manual Page 15

New
This command clears the edit buffer in readiness for the creation of a new source file. You
will be prompted to input a name for this new source file. The source file is empty when
first entering the IDE.

Save [F2]

Saves the current source file with its current name. The 'hot-key' F2 also has this effect.
Again, any error will cause the save to be aborted with an appropriate error message

Save as

This is identical to the 'Save File' option above, except that you are prompted for a file name
to save the source file under, instead of the source being saved as the current name

Merge

This option will append the chosen file to the end of your current source file. You are
prompted for a file name.

Print

Print the source file to the printer. The printing is affected by various preset options (See
page 23) and may be aborted by pressing ESC at any point.

Get Info

Displays version number, copyright and credit notices.

Import

This option will allow you to import an ASCII (Text only) file from any word processor (or
C Compiler) that can produce such a file. This way you can choose to use your own word
processor in preference to the built in editor supplied. N.B. The import process can take
some time as the file is converted to the compiler's own internal format.

Export

The opposite of Import - allows you to save out your SAM C source file in standard ASCII
format for porting to another C compiler or use in a word processor to get improved printer
routines.

Directory

The current disc directory is displayed in a LIST BOX. By highlighting an item and pressing
return, the chosen file can be loaded, merged, erased or imported.

SAM C Users Manual Page 16

Drive

This allows the specification of the current drive number. This option toggles the drive number
between 1,2 and 3. Using the ram disc (Drive 3) saves considerable time when working.

Quit

This option quits the IDE and returns you to the calling program (usually BASIC). From
BASIC the compiler may be restarted by pressing F7,

Edit

The editor works just like a word processor in screen mode 3, with 64 characters per line.
No line numbers are used in C, allowing you full use of all characters on each line. On the
screen you will see a text cursor which indicates the position at which text will appear.
Automatic scrolling of the screen is performed if a cursor movement would take it above or
below the current portion of the source file that is being displayed. Various other keys also
control the editing, and these will now be listed, along with their functions :

ARROW KEYS - Cursor Movement
CAPS - Toggle CAPS lock
DELETE - Backspace
SYM DELETE - Delete current character
CTRL DELETE - Delete a line
EDIT - Clear current line
SYM EDIT - Restore current line
TAB - Tabulate to the right
SYM TAB - Tabulate to the left
SYMBOL N - Find next item
SYMBOL M - Find next error
SYMBOL I - Toggle Insert Mode
SYMBOL C - Show Command Menu
SYMBOL S - Swap location
CNTRL ESC - As per SYMBOL C
SYM RIGHT - Move text cursor to end of current line
SYM LEFT - Move text cursor to start of current line
F0 - Last Source page
F1 - Page Down
F2 - Set Block
F3 - Insert Blank Line
F4 - Page Up
F5 - "{" left curly brace
F6 - "}" right curly brace
F7 - First source page
F8 - "(' open parenthesis
F9 - ")" close parenthesis

SAM C Users Manual Page 17

In addition to these, you can set up a 'macro definition' on a particular key combination to
achieve a desired effect. On startup, various combinations are already set for you in the
'CC.MAC' file on your C disc. Each of these requires the CNTRL key to be pressed along
with the key indicated. These are, in alphabetical order by keyword, as follows :

CNTRL +

= - #asm 1 - #define 7 - #else " - #endasm
9 - #endif x - #ifdeclared 2 - #ifdef 0 - #ifndef
z - #include m - #pragma argc n -#undef F0 - atoi(
b - break q - case c - char k - continue
d - default : a - do j - else e - extern
f - for F4 - fprintf(" F5 - fscanf(" F9 - getche()
g - goto o - if (F3 - input(i - int
F2 - itoa(F1 - itou(- - NULL F7 - printf("
F6 - putch() y - register r - return F8 - scanf("
; - sizeof t - static + - struct s - switch (
1 - typedef : - union u - unsigned v - void
w - while (

TAB - #include "stdio .h" CAPS - #include "graphics.h"

All other key combinations are available for you to set up for your own use.

Entering Source

After entering the editor, you may type your program (the source code). After pressing "RETURN on
each line, any keywords on the line are automatically changed to lower case and redundant spaces are
stripped from the code. N.B. In order for the keywords to be correctly recognised, there MUST be a
space before and after each keyword.

a=sizeof(b); - This will NOT work!
a = sizeof(b); - Correct ! ! !

The last line of the screen is the status line, which displays the cursor position, CAPS lock,
current mode, filename or block position.

Block Settings

To define a block (to use with the block commands) move the cursor to the first line and
press F2 to select. Now move the cursor to the end line of the block and press F2 again to
select the end of the block. At this point the status line will change to display the lines which
are in the block : eg Block 0003 0007

Block Operations

First, you must have selected a block. Then enter the control menu by pressing SYMBOL C
or CNTRL + ESC. The status bar will now display the control menu :

Copy Move Delete Find Replace Goto Start End Put Write cAlculate

SAM C Users Manual Page 18

To select an option from the control menu, press the key which is in upper case. When any of
these options are selected, the current block settings are cancelled.

Copy Places an exact copy of the block selected at the current cursor position
Move Moves the block to the current cursor position
Delete Delete the block from the source

Find & Replace

This option allows a search to be made of the source file for a search string which is input via
a dialogue box (max 16 chars). You can use a wildcard '#' which matches any string,
including an empty string.
eg POINTER# will match POINTER, POINTERS and POINTER2

To get the next item which matches the string, press SYM N. If you wish to change the
string once found, the replace command may be used. This requires two parameters, the
search string as before, and the replacement string. If the replacement string is empty, the
first string will be removed from the source (ie replaced with an empty string). When the
search string is found, the following message is displayed :

REPLACE(y/n/a/e) ?

Press y to replace the string, n to skip, a to replace all future strings which match and e to end
the searching and replacement. If a block is selected, then this command only performs
through the block, otherwise the whole source file is affected.

Put

This command takes the currently selected block and saves it to disc.

Write

Prints the current block on the printer.

Goto

To set the cursor at the line number specified.

cAlculate

Standard functions +,-,/,* may be used on decimal or hexadecimal numbers (preceded by &).
Results are displayed in both decimal and hexadecimal forms.

Inverse Colours

Pressing the SPACE bar at this point changes the screen to display everything in inverse
mode.

SAM C Users Manual Page 19

Macros

The editor supports text macro definitions. If a key, which does not have a macro already
associated with it, is pressed, a macro recorder dialogue box is displayed. Pressing ESC
aborts the option. The EDIT key cancels the current macro definition. Standard macro
definitions are set up from the CC.MAC file on loading. To store your own macro
definitions, select OPTION/EDITOR/MACRO/SAVE option from the main menu. NB :
While defining the macro, pressing control keys (cursors, Delete, Return etc) will not have
any action in the recorder and only be displayed as dots, however they will perform as
expected when the macro is executed.

Debugger

The DEBUG option allows a monitor / debugger. BASIC memory allocation is as from
&6180 to &7FFF which is saved into a buffer. Upon exit, BASIC is returned to its original
state. Debug allows you to debug your program, setting breakpoints etc. Your program normally
exists from &8000 to &FFFF in memory pages 1 and 2. The stack defaults to
&4A00. The screen displays a control panel which shows the contents of various registers :

LMPR - Low memory pointer PRN yes/no - Printer
HMPR - High memory pointer SCRN - User Screen page
VMPR - Video memory pointer OPTI - Work mode (later)

Memory editing, arithmetic, text editing...

CAPS - toggle upper/lower case characters
M - set memory pointer (MEM) to
UP KEY - Move to previous byte
DOWN KEY - Move to next byte
RETURNS - Insert byte to current location (MEM), if no current value exists, move to
 next MEM
SPACE -Insert word to current location, this writes bytes to MEM and MEM+1, if no

value exists. move to MEM+2
F3 - Toggle between decimal/hexadecimal listing
A+SYM - Requires two parameters, shows result of +,-,*,/
T - Insert any ASCII text. When in text mode :-

UP = MEM-1
DOWN = MEM+1
ESC = End of command
DEL = MEM-1 and insert

ESC
F9

- Cancel current command
- Set VMPR to user screen

F8 - Set VMPR to work screen (monitor use)
F7 - Disable/Enable printer output with listings
F6 - Set HMPR to new value
F5 - Toggle the debugger controlled part of the screen
F2 - Set OPTION bit : 0 - CR+LF after RET,JP...
 : 1 - LF after CR to printer
 : 2 - Formfeed after page

SAM C Users Manual Page 20

Fl - Set video page for debugger output
F0 - Show disassembly code
S - Set user screen video page value
SYM+S - Set video mode for user screen

Listings, previews ...

F0 - Disassembling from MEM address
 ESC - cancel

LEFT - Return to start of listing
RIGHT - Jump to next listing page
UP - Step one line back
N - Find next item
Other - Next line of listing

V - Disassemble from other address without changing MEM
O - Text listing from MEM in ASCII form
O+SYM - As for 'O' but for other address without changing MEM
L - Hexdump from MEM as per FO
L+SYM - As for 'L' but for other address without changing MEM
RIGHT - Save current MEM to buffer and set to address
F4 - As per RIGHT but set address to MEM
LEFT - POP last address from buffer to MEM pointer
Q - Show the MEM buffer content
U - Show last 5 addresses on the Z80 stack

Block moving and filling

I - Copies the block between FIRST and LAST to address
I+SYM - Copies the block from FIRST of size LENGTH to address
P - Fills the block between FIRST and LAST with byte
P+SYM - Fills the block from FIRST of size LENGTH with byte
J - Compares the block between FIRST and LAST with the memory from
 address TO
J+SYM - Compares the block from FIRST of size LENGTH with the memory from
 address TO

Disc commands

SYM+R - Read drive 1 at TRACK,SECTOR to address FIRST
SYM+W - Write drive 1 at TRACK,SECTOR from address FIRST

Searching
G - Up to a 5 byte string may be entered, terminated with RETURN. Pressing Z allows
 input in ASCII form.
N - Find next item.
G+SS - Show search string, debugger memory and current breakpoint address.

SAM C Users Manual Page 21

Trace, breakpoint

Z+SYM - Execute one instruction (from current MEM) Increment by register R.
X+SYM - As per Z+SYM, but step over instruction.
V+SYM - Execute Z+SYM continuously until ESC pressed.
 F toggles between slow/fast trace.
B+SYM - Execute X+SYM continuously until ESC pressed.
 F toggles between slow/fast trace.
N+SYM - Setup registers
 UP - previous register
 DOWN - next register
 RET - change register contents
 RET - toggle flags
 ESC - cancel command
W - Set start of program to execute.
U+SYM - Set breakpoint to current MEM and execute
 program from address as set by W command.
E+SYM - Execute an EXX (as in machine code) command.
C+SYM - Execute an RET (as in machine code) command.

Execute program

H+SYM - Input address TO and this address is CALLed. Press 'Y' to execute.
T+SYM - As for H+SYM but the input address is executed by a JP command.

Exit from debugger

Q+SYM - Return to IDE.

Compile

This command converts your source code into assembly code. Errors are displayed and are included into
the source file. If a fatal error occurs, compilation will be terminated without the production of the
assembly code. From the main menu, the hot-key F9 performs the compilation using the current settings.
ESC aborts the compilation. Once compilation is complete, a dialogue box appears with the following
information :

Errors - number of errors
Symbols - number of global objects declared in source
Document size - size of compiled source file (bytes)
ASM file size - size of produced file
Compile lines - number of lines which are compiled
ASM file lines - number of lines in the assembly code file
Elapsed time - compilation time

Save source file - saves C source file before compilation (default - off)
Save ASM file - saves the assembler file as 'filename'.S (default - on)
Assembler pass - assembles the compiled code (default - on)
Save object code - saves object code as 'filename'.BIN (default - off)

SAM C Users Manual Page 22

Auto Run - run the code after compilation and assembly
Do it - Compile the file with the above settings

Using a RAMdisc for the include files saves considerable time during compilation.

The saved assembler file can be loaded into Comet assembler for hand optimisation and
subsequent assembly. Comet costs £24.99 and is available from either FRED Publishing or
Revelation Software.

Options
Compiler

Any customisation that you set up for the compiler may be saved to disc (CC.INI) and will
be automatically loaded the next time you load SAM C.

Merge start code

This option toggles between the inclusion/non-inclusion of the automatic inclusion of
assembler directives at the start of the C program. These directives are stored in the CC.INIT
file and the default is to be included in files.

Stack pointer

Start value of the Z80 stack pointer on program entry. The default value is &4A00 (18944
decimal). You may change this value to within the ranges &4200 to &4A00 and &6000 to
&8000. The minimum size of the stack is 512 bytes. DO NOT CHANGE THIS VALUE
UNLESS YOU ARE EXPERIENCED IN MACHINE CODE.

ORG address

Sets the address for the DUMP and ORG directives at the start of the final executable code.
The default is &8000, but may be changed within the range &6500 to &FA00. DO NOT
CHANGE THIS VALUE UNLESS YOU ARE EXPERIENCED IN MACHINE CODE.

East code

This option causes the code to be optimised for speed, but at the expense of being extremely
large. (default - off)

C src. as remark

To allow remarks to be included in the assembler line preceded by ; (default - off)

SAM C Users Manual Page 23

Label prefix

The compiler creates its own internal labels. These consist of two characters and a number
(CC0,CC1..CC65535). If two C programs are merged together, then duplicate labels cause a clash. The
default labels are as shown with the letters 'CC and a number. You can use this option to define your own
letters as the start of the labels in the second file. eg. CC for main file, C1 for first library, C2 for second
library.
The library files are compiled once only and merged with the main file when needed. The prefix may
be any alphanumeric characters, provided the first is a letter.

Beep if error

This self-explanatory option causes a beep to be generated if an error occurs. (default - off) Pause if

error

Waits for a key to be pressed if an error occurs. (default - off)

Optimise size

Two methods of code optimisation are available. The first is for size and the second is for speed. Some
tips for faster programs are:
1. Use int, not char variables.
2. Use unsigned char, not signed.
3. Global variables are three times faster than local variables. This option works only if
FASTCODE option is OFF only.

Relative jumps

This option toggles between the code producing absolute (JP) or relative (JR) jumps. The default is
absolute jumps (off). Please note that if the relative jump option is selected, this can cause
'Displacement out of range' errors from the assembler.

Unsigned char

This option toggles between char declarations being automatically signed or unsigned. (default -
on)

Disc for output

This option sets the disc drive that the assembler source will be saved to. The best drive to use is the
RAM drive (if available). The files CCINIT.S and RUNTIME.S should also be copied here. The
compilation time will be greatly speeded up.

Printer

SAM C has the facility to print out your programs via a comprehensive printer driver. This enables you
to set many ways in which the printed output is formatted in ways which will now be described. The
printing may be aborted at any point by pressing ESC.

SAM C Users Manual Page 24

Header

You may specify a header for each page up to a maximum of 35 characters long. The default
is 'SAM C - Compiler Version 3.1'.

Page length

This specifies how many lines may fit on one page (+2 for the header). (default - 78)

Margin

The number of spaces which are printed at the start of each line. The default value is 8, up to
a maximum of 32.

Compressed

Specifies whether the printed output is to be in normal or compressed form (10 or 12
characters per inch). Default is normal (off).

Left feed

This allows the sending of a Line Feed code after CR, the default is ON (see your printer
manual for details of this setting).

Form Feed

This allows the sending of a Form Feed code after CR, the default is ON (see your printer
manual for details of this setting).

Preferences

Mouse

The graphics cursor (pointer) is normally controlled by the arrows keys or the joystick. If
you have a SAM MOUSE, you can set this option to allow you to use it. DO NOT use this
option if you do not have a mouse as your computer will lock up. (default - off)

Text size

You may change the maximum size of the source file in steps of 16K upto a maximum of
114K (9 pages) (16384 bytes = 1 page). The default value is 1 page (16384 bytes).

Workspace

As for the previous option but for the size of the output assembler file.

Ink

The colour of the ink (from 0 to 15), (default - 15).

SAM C Users Manual Page 25

Paper

As before, but for the paper colour. (default - 0)

SVision

If this option is ON, the programs will be compiled using the SAM Vision library. This uses the
SV40.LIB file as the runtime file. The SAM Vision library is a separate library providing
a more complex set of functions including a graphical user interface. It is still in development
and will hopefully be released later in 1995.

Ramdisc

Number of tracks formatted in Ramdisc, upto 100. (default - 30)

Font no.

Font used (1-4) (default - 1)

Editor

Autoindent

If this option is ON (default) the editor will set the cursor to the same indentation as that of
the last line. All spaces before the first letter on a line are compressed to one byte in the
source file.

Tab size

This sets the size of the tab setting (4 to 16) default 4.

Macros

Save

Saves the current macro definitions from the editor. The definitions stored in the file
CC.MAC are loaded on startup.

Load

Reload pre-stored macros into the editor.

Reset

Removes all macros except for CNTRL-C and CNTRL-I.

SAM C Users Manual Page 26

Save

This command stores the state of the switches into the configuration file CC.INI which is
loaded on startup. All options set on the following menus are stored :

OPTIONS/COMPILER; OPTIONS/PRINTER; OPTIONS/PREFERENCES;

along with the EDITOR autoindent, ins/over flag and TAB size. This option should be used
each time an option is changed.

Browser

This option is only accessible after compilation has been completed. It shows details of the global
objects in the current program (variables, functions, etc) on the printer.

Objects

Shows a list box which contains the names of all of the global objects. The selected item will
be displayed with the following information :

Name - Name of object
Ident - Identifier :- VARIABLE, POINTER, ARRAY, FUNCTION
Type - Type of object :- CHAR, INT, STRUCT, ENUM, UNION
Class - Storage class :- STATIC, REGISTER, EXTERN, AUTOEXTERN
Sign - Signed/Unsigned
Defined - if defined
Used - if used
Params - Numbers of parameters or size of array size

Protocol

The complete list of global objects and macros (#defines) are printed on the printer.

Symbols

The complete list of all symbols used in the compiled code

CodeView

A listing of the assembly code

SAM C Users Manual Page 27

The C Language

Introduction

Because of the huge number of C implementations around, the American National Standards
Institute (ANSI) introduced their definition of C in 1988 in order to maintain portability
between different versions.

Although SAM C is not quite ANSI C, it is based more the original K&R C (Kernighan and
Ritchie) but leans toward the ANSI standard and most features are the-same. The most
important differences from ANSI C in SAM C are that long, double and float types are not
implemented.

 Remarks

The /* and */ sequence for the inclusion of remarks in standard C source is accepted by SAM
C, but nested remark identifiers are not allowed. Remarks may be spread over several lines.
eg

/* This is a standard

C remark block */

An extension in ANSI C is to allow single line remarks to be entered after a double forward
slash sequence. eg

// This is a single line remark
// and this is another!

 Identifiers

The name of each object must start with a letter, followed by any alphanumeric characters.
Keywords (see below) may NOT be used as identifiers. The first 14 characters are examined
by the compiler. N.B. Do NOT start identifiers with the'_' character.

 Keywords

The following are recognised keywords in SAM C and may not be used in any other than the
recognised context.

auto break case char
continue default do else
enum extern for goto
if int _interrupt register
return short static struct
switch typedefstruct union unsigned
while

SAM C Users Manual Page 28

Constants

Integer constants - These are numbers in the range -32768 to 32767 inclusive, or 0 to 65535
if declared as unsigned. The number specified is assumed to be in decimal, or, in octal if the
number is preceded by a zero, hex if preceded by '0x' (zero, x) and binary if preceded by '0b'
(zero, b). Thus the following initialisations are equivalent :

int a=255, 0377, c=0xff, d=b11111111;

Explicit type is not implemented.

Character constants - any alphanumeric character placed between apostrophes (eg 'x') may be
used as a character constant. Character constants are stored internally as unsigned ints. In
 addition to alphanumeric characters, the following are also valid constants :
'\t' - tab; '\\' - \ (backslash);
'\b' - backspace; '\" -' (apostrophe);
'\n' - carriage return; '\"' - " (speechquotes);
'\a' - AT(print at); '\DDD' - binary template;
''\f' - form feed; '\xHHH' - hex byte;

16 bit character constants are allowed but are treated as integer constants. eg int a='AB';
(=0x4142).

Floating point constants are not implemented.

Literal constants - These are implemented as standard except that if a string is longer than a
current line length is required, placing a backslash at the end of a line will allow the
continuation of the string on the next line. Eg

char *array = "this is a string \
on two lines";

The size of standard types

Type Size (bits) Range

unsigned char 8 0 to 255
signed char 8 -128 to 127
unsigned short 16 0 to 65536
signed short 16 -32768 to 32767
unsigned int 16 0 to 65536
signed int 16 -32768 to 32767
enumerated 16 -32768 to 32767

SAM C Users Manual Page 29

Register modifier

The type 'register' may be applied to an identifier as per the ANSI specifications, if CPU
registers are available. Variables declared of type register are stored in CPU registers rather
than main memory, where normal variables are stored. This means the variables are accessed
much faster because the CPU does not require memory access. Only two register variables
are available at any one time.

Automatic type conversion

Character expressions are represented internally as short integers. Integer and pointer
representations are identical. An expression which involves integers and unsigned variables
will return an unsigned type.

Expressions

int c;
c = *(char *)12345; //This is as per BASIC - PEEK(12345)
c = *(int *)12345; //This is as per BASIC - DPEEK(12345)

The shift operators << and >> perform a logical (NOT arithmetic) shift.

Declarations

Variable

There are several variable types available each of which can be modified by the modifiers :
typedef, auto, static, extern and register. Typedef and extern do not allocate memory for the
associated variables. Exceptions to this are function prototypes. eg

static int num=1; // static is implicit for globals
extern int num2;
char *string, *sfnc(); // string is pointer to char,
// sfnc is extern function gets a char pointer

char (*fncl)()[l0]; // fnc1 is an array of function
 // pointers which gets a char

int main()
{
register unsigned a,b,c;

In the above program fragment, variable a will be placed in IX, b in IY, c and other variables
will be allocated as auto variables on the CPU stack.

External variables do not allow direct initialisation. eg

extern string[] = "abcd"; // Causes an error

SAM C Users Manual Page 30

All of the SAM C library files are composed of two files, eg. graphics.h and graphics.c. The .h
file contains all of the function prototypes of the functions which are defined in the .c file.
At the start of your program you should use the #include directive to include any libraries
which contain the functions that you wish to use, eg #include "graphics.h". Just after this you
should type in the prototypes of the functions you will be using. At the end of your program,
you should then include the corresponding .c file. SAM C will only include and compile
those functions which are declared AND USED by your program. This keeps the final
executable code as small as possible.

Function modifier _interrupt

The modifier _interrupt allows functions to be defined as interrupt handlers. The modifier
causes code to be generated which saves all used registers upon entry and those registers to
be POPed back from the stack upon exit. WARNING : THIS FUNCTION IS FOR
ADVANCED USERS ONLY, USED INDISCRIMINATELY IT WILL ALMOST
CERTAINLY CRASH YOUR MACHINE!

eg : A mouse handler fragment.

void (*old_mouse)();
_interrupt void mouse_handle(void)
{

// your handler routine
if (old_mouse) (*oldmouse)(); // call old vector
}

int main(void)
{

old_mouse = *(int*)0x5AFC; // save old vector
(int)0x5AFC = mouse_handle; // set new vector

(int)0x5AFC = old_mouse; // restore old vector

}

Initialisation

When a static object is declared, it may be initialised at that time using the '=' operator in the
standard C way.

char space = ' ', *string = "sentence", *p_c = "next";
int number = -1, array[4] = { 1, 2, 3, 4 };
char *messages[3] = { "first", "second", "third" };
int array2[2][2] = { 100,200,300,400 };

The direct initialisation of structures is not possible. The initialisation expression must be a
constant. If an object is not initialised, then it will be assigned NULL. Register and auto
variables are not allowed to be initialised, they will be undefined on entry. If an array is
initialised with fewer entries than the length of the array, the remaining items are filled with
NULLs. eg

SAM C Users Manual Page 31

char pole[6] = "abcd";

The contents of 'pole' in order will be : 'a', 'b', 'c', 'd', 0, 0 Extern variables are not allowed to
be initialised at declaration time, but can be initialised immediately afterwards :

extern char name[] = "Message"; // Not allowed!

extern char name[];
name[] = "Message"; // This is OK.

Compound Statement

This is a sequence of single or compound statements enclosed between curly braces { }.
Declarations are allowed at the start of a compound statement.

main()
{

char a,b;
 a=b=3;
 if(a==b)
 {
 char a;
 a=b+1;
 }
 printf("%d\n", a); // Prints 3, not 4
}

Block locals may have the same name as those in the containing block.

Extern modifier

Functions with variable number of parameters :

1. If a function has a variable' number of parameters, eg void printf(...) the compiler will
place the number of parameters at compile time into register A.

eg printf("Number %d", l);

is translated as :

LD HL,CC0
PUSH HL
LD HL,1
PUSH HL
LD A,2 // this is the number of parameters
CALL PRINTF
POP BC
POP BC
 RET
CC0: DEFB "Number %d",0

SAM C Users Manual Page 32

2. How many parameters?

printf(int *arg)
{

int count;
return ((_print ((count=CCARGC()) + &arg-1, count);

}

CCARGC is a built-in function that returns the parameters entered in reverse order (last one
first). The function must be called at the entry to a function. Register A is copied to HL and
the function is called repeatedly until the Accumulator holds zero.

The pre-processor

The following compiler directives may be entered in your source :

• Macro Definition

#define macroname macrobody

• Macro Removal

#undef macroname

• Conditional Compilation on Macro Definition

#ifdef macroname, #else, #endif
#ifndef macroname, #else, #endif

• Conditional Compilation of Library Functions

#ifdeclared nameofobject, ..., #endif

• Include Source File

#include "filename"

• Inclusion of Error Message into the Source

 #error message

• Inclusion of Assembler Instructions into the C Source

#asm, #endasm

• Compiler Check and Controls

#pragtma

SAM C Users Manual Page 33

#define

#define cannot overwrite an existing macro. If you need to redefine a macro, you may do so
as shown :
#define POCET 10 //macro definition
#undef POCET //macro removed
#define POCET 20 //new definition

#include

#include simply takes another file and inserts it into the same position. #include may not be
nested in another #included file. It is usually found at the start of a program. eg

#include "stdio .h"

When #includeing a library of functions, it is also necessary to include the prototypes (as in
the header file) of the functions used.

#ifdeclared, #ifdef, #ifndef, #if

The #ifdeclared directive allows conditional compilation of the library files according to which
functions contain the named objects. Its usage is :

#ifdeclared objectl_name [, object2_name [, ...]]

where object_name is the name of a function, pointer, variable, etc

#ifdeclared plot, box // if plot and/or box are defined
void plot(int x,int y) // then compile this function
{….}
#endif

All of the libraries are formed like this. This allows only the used functions to be compiled.

The #ifdef and #ifndef directives are used for standard conditions, as follows :

#ifdef SAM512 #ifndef SAM512

int page=32; int page=l6;
#else #else

int page=16; int page=32;
#endif #endif

These two routines have exactly the same effect.
The #, if directive can evaluate any constant expression :

#if LINE >= 99 // LINE is a macro definition
…
#endif

SAM C Users Manual Page 34

#asm, #endasm

These directives allow you to code time-critical routines in assembly code.

#asm
// assembler instructions, directives and remarks // (as
per Comet Assembler)
#endasm

These directives can be used inside and outside functions:

#asm
ORG 16384
DUMP $ #endasm

int main()
{
cls(1);
}

void cis(int a)
{
#asm
LD A,L
CALL &14e
#endasm
}

1. At entry the last parameter value is in HL (see Stack Pointer for more details)
2. On exit, HL can be returned as the function value
3. RET instruction is automatically inserted at #endasm

#pragma

This directive allows you to issue special commands to the compiler. There are three uses of
#pragma :

#pragma argc

If you are going to use command line arguments with your program, then you MUST place
this command at the start of your program. It instructs the compiler to insert code to place
the number of command line arguments into the accumulator at the start of your program.

#pragma test

This allows you to switch on the advanced compiler checks (unused variables and
parameters, implicit integer return values etc are indicated). To switch this option off, use
the #pragma test command again.

SAM C Users Manual Page 35

#pragma option

This allows you to set the compiler options found in the menu OPTIONS/COMPILER from
within your program. There are 9 switches with parameters. You may use the comma(,)
separator to specify more than one switch at a time. Please note that some of these options
will only have a meaning to you if you are familiar with machine code. The switches are as
follows :

a (const expression) - set start address of program(ORG)
s (const expression) - set address of Z80 stack pointer
r (2 char const) - set prefix for assembler labels
c (switcher) - source in assembler list
o (toggle) - speed optimise
f (toggle) - size optimise
p (toggle) - prolog/epilog linking
v (toggle) - SAM vision library linking
u (toggle) - '+' for unsigned or '-' for signed default variables

N.B. 'switcher' uses '+' or '-' after option specifications

#pragma option c+, a 30000, o-

This means that the C source will be placed as remarks into the assembler file, the assembler
directive ORG will be placed at the start of the machine code to force the start address to be
30000 and optimisation is not in use.

Low-level communication

This information is not normally of interest to the general user - it can be important if you are
hand optimising routines or interfacing with your own machine code. It is included here for
completeness.

The Stack Pointer and Function Interface

The Z80 stack pointer is used at the function interface to store both formal parameters and
local variables. The arguments to the function call are evaluated from left to right and stored
onto the stack - ie the last argument is on the top of the stack. If a function prototype exists,
then the number of parameters will be checked. After the arguments have been processed in
this way, the function will be called. Once the function has been entered? space is allocated
for the local variables (on the stack). At exit this space is reclaimed. The arguments are
removed from the stack after returning from the function. The return value of the function is
stored in the HL register pair (and in DE when needed). eg

int a1=2, a2=4;
int main()
{

al = print(al, a2, 100);
}
int print(a, b, c) { }

SAM C Users Manual Page 36

Generates :

al: DEFB 2
a2: DEFB 4
main:
LD HL,(a1) // first argument to SP
PUSH HL
LD HL,(a2) // second argument to SP
PUSH HL
LD HL,100 // last argument to SP
PUSH HL
LD A,3 // number of parameters
CALL print // call function
POP BC // remove arguments from stack
POP BC
POP BC
LD (a1),HL // save result
RET
print:
RET

Using the registers

The compiler does not use the I and R registers in the compilation process. The compiler
uses BC and H'L' as working registers, DE for temporary results and HL for the results of
operations. The index registers IX and IY are reserved for register variables. When the
program is run, the interrupts are enabled. The B'C', A'F' and D'E' registers are unused.

Memory Sharing

SAM C is loaded at the end of the free memory in your SAM and allocates 6 RAM pages
(96K) which the program uses as an allocation table (ALLOCT). After this, the compiler
allocates the next 4 pages as 2 for source, 2 for workspace. In total, 10 RAM pages are used
(160K). An optional 3 pages may be used as a RAMdisc (if you have MasterDOS) and 1
page for the SAM Vision buffers (if this library is used).

The 'runtime' file that is attached to your program calls ROM routines (RST 16 and jump
table vectors only). Space is set by the compiler to default to 'OPEN TO 3' and RAMTOP to
32767. Memory for static objects is allocated at compile time. The free memory 'behind'
your program is pointed to by the global pointer MEMPTR_ in the runtime file. This is used
by the functions alloc() and free() which are found in "stdlib". Normally the program is
compiled to run at address 32768.

SAM C Users Manual Page 37

Program arguments and the RUNTIME file

You may pass arguments to your program in the following way :

CALL start_address+3, "first", "second", "third", "fourth"

The main function can accept two arguments. The first (argc) contains the number of
arguments on the command line minus 1. The second argument is a pointer to an array of
char pointers (char *argv[];). A simple example of this may be found in the demo ECHO.C
source file on your disc.

load "echo.bin"code
call 32768+3,"Hello","World"

When calling your compiled program, you should call the start address (32768 unless you
changed it with the options) if you have no command line arguments, or start address+3 if
you are using command arguments (and don't forget to use the #pragma argc at the start of
your program!)

argv[0] contains the name of your program (+'\0'). The first argument is stored in argv[1],
etc. The last argument is argv[argc-1]. If argc==1 then no arguments have been given.

Your C program is merged with the runtime module automatically. This file contains routines
for integer arithmetic, built in functions etc. It is an assembler file that is attached to
the start of your program. When you return from a function (including main()), the HL
register pair contains the return value.

SAM C Users Manual Page 38

APPENDIX A

The Standard SAM C Libraries
Built in functions are stored in the runtime file which is automatically attached to your
program output. These routines have been hand coded in machine code and are extremely
fast. It is recommended that you use these routines wherever possible.

The libraries consist of two files each. The first is the header file which contains function
prototypes and the second is for the body of the functions themselves. Each of the files are
readable by the editor as they are standard C files. To use the library files, include the
relevant header file and prototypes at the start of your program, and then include the
functions file at the end of your program. The libraries will now be described, although
fuller descriptions are available in C books.

"stdio .h"

This header file is unusual in that there is no corresponding function file. "stdio .h"
contains headers for all of the built in functions and also definitions of standard names such
as NULL, EOF etc. It should ALWAYS be included at the start of your program as most
library functions need it.

int getc(), int getch()
 One character is read from the current stream and returned. EOF will be returned
 on end of file or error.

void ungetc(int c, int strm)
 This will push c back onto the stream such that the next call to getc() will return this
 character.

int getchar()
 As per getc() but stream 2 (screen) is opened first.

int fgetc(int strm)
 As for getc() but from a specified stream which is opened first.

int fgetc(int strm);
 { stream(strm); return (getc()); }

This stream will be used with all subsequent functions in the range -5 to 16.

void putc(c), void putch(c)
 Outputs one character to the current stream (via RST 16)

int getche()
 Returns code of the key pressed with echo to screen.

int kbhit()
 Returns 1 if keypressed, else returns 0.

SAM C Users Manual Page 39

char *gets(char *s)
Reads a line from the standard input into the buffer at 's', deleting the newline. The
buffer is NULL terminated. Its return value is its argument, or NULL on end of file.

char *fgets(char *s, int max, int strm)
fgets() places in buffer 's' up to max-1 characters from the stream specified. If a
newline occurs before the correct number of characters have been read, then fgets()
will return immediately. The newline will be left in the buffer. The buffer is NULL
terminated in any other case. A successful fgets(will return its first argument,
NULL is returned on end of file or error.

void stream(int strm)
stream() opens stream strm for I/O functions. strm may be in the range -5 to 16. This
function calls the JSETSTRM routine in ROM0.

void print(char *s)
print() sends the specified string to the current stream.

void fputs(char *s, int strm)
fputs() opens the specified stream and uses puts() on s.

void puts(char *s)
As for print() but sends a newline character at the end.

void fputc(int c, int strm)
fputc() opens stream strm and outputs character c.

void printf(char *cntrl, ...)
printf() is a formatted output routine to the standard output (stdout). It takes as
arguments a format string (which may include text) followed by a list of zero or
more arguments. In the format string are conversion specifiers, each of which
MUST correspond to an argument after the string. Each conversion specifier is of
the form %m.nc, where the % indicates a conversion, followed by an optional width
specification m, n is an optional precision specification (introduced by the dot())
and c is the letter specifying the type of conversion. (It's much easier than it sounds,
honest!) A minus sign(-) preceding m indicates left rather than right alignment of
the converted value in the field. Where the field width is larger than that required
for the conversion, blank padding is performed to the left or right as required. Where
right adjustment of a numeric conversion is specified, and the first digit of m is 0,
the padding will be performed with zeros rather than blanks. The valid conversions
are :

Integer conversions: b O x X u d

These are (in order) to base 2, 8, 16, 16, 10 and 10. The conversion is signed in the

 case of d, unsigned otherwise. the precision value is the total number of digits to
 print, and may be used to force leading zeros. eg 8.4x will print 4 hex digits in an 8
 wide field.

SAM C Users Manual Page 40

Strings : s

The value argument is assumed to be a character pointer. At most n characters from
the string will be printed in a field m characters wide (if specified).

Character : c

The argument is assumed to be a single character and is printed literally. Any other
characters used as conversion specifications will be printed. So %% will produce a
single percent sign. eg

printf("Total = %4d%%",23)
// The above prints : Total = 23%
printf("Name = %.8s","a1234567890") //
The above prints ; Name = a1234567

void fprintf(int strm, char *cntrl, ...)
As per printf, but the output is directed to the specified stream.

void sprintf(char *s, char *cntrl, ...)
As per printf but the output is directed to the specified buffer. The output will be
NULL terminated.

int scanf(char *cntrl, ...)
scanf() performs formatted input from stdin, in much the same way that printf()
performs formatted output. The input conversions are performed according to the
format string, in general a character in the format string must match a character in
the input. However, a space character in the format string will match zero or more
'white-space' characters in the input ie spaces, tabs and(or) newlines. A conversion
specifier takes the form of the character '%' as per printf, optionally followed by a
numerical maximum field width specifier, followed by the conversion character
(which specifies what type of input is expected). Each conversion specifier will
assign a value to the variable pointed to by the next argument. The conversion
characters are as follows:

b o x d
Skip white space, then read a NUMBER in base 2, 8, 16 or 10 respectively. If a field
width is supplied, only accept that many characters from the input. A leading minus
sign will be recognised. The pointer argument is assumed to be a pointer of type int
(ie call with 'address of an integer variable eg. &i)

s
Skip white space, then read a sequence of non white-space characters. The pointer

 argument must be a pointer of type char. The field width will limit the number of
 characters read. The resultant string will be NULL terminated. The input can be
 terminated by a white space character.

SAM C Users Manual Page 41

c
Read a single character from the input. The pointer argument is assumed to be a

 pointer to char. If a field width is specified, then that many characters will be read.
 This differs from the %s option in that white space is stored and does not terminate
 the input.

scanf() returns the number of successful conversions, EOF is returned if an error
 occurs before all of the conversions are completed.

scanf("%d %s", &a, &s);
 with input "21s"
 will assign 12 to a, 's' to s.

scanf("%4cd", &c);
 with input " abcd " // note the space either side of abcd
 will assign " abc" to c

int fscanf(int strm, char *cntrl,)
 As per scanf(), fscanf() performs formatted input but this time from the specified s
 tream. See scanf() for full details of the format of this command.

int sscanf(char *s, char *cntrl, ...)
 As per scanf(), sscanf() performs formatted input but, this time from the specified
 character array. See scanf() for full details of the format of this command.

N.B. For fprintf() and fscanf() :

the streams which are available for use by these commands are the standard BASIC
 streams -5 to 16 (see Technical Manual). Stream stdout(2) is the upper screen,
 stdin(0) is the lower screen and stdprn(3) is the standard printer output. If the OPEN
 #2,"P" command is executed from BASIC prior to running your program, then all
 output is redirected to the printer. If you have MasterDOS, you can OPEN
 #4,"filename" and then read or write to "filename" by fscanf(4,...) or fprintf(4,...).

char *input(int line, int column, int max)
 input() is a non-standard function for convenient text string input. The cursor "|" will
 be displayed at position "column","line" and allows a maximum line input of "max"
 characters. The following keys may be used for editing the input : RIGHT, LEFT,
 DEL, SYM DEL, EDIT (Clear Line). The input is terminated with the RETURN
 key. The function returns a pointer to a buffer which contains the NULL terminated
 input, or NULL if the input is cancelled by the user pressing ESC.

void at(int line, int column)
 Set the current print position to column,line.

void exit(value)
 Terminates the program and returns "value".

SAM C Users Manual Page 42

char *itoa(int value, char *string, int radix)
The integer value stored in "value" which is of base "radix" is converted to a string
which is placed in "string". Leading whitespace is skipped.

char *itou(int value, char *string, int radix)
As per itoa() but value is assumed to be an unsigned integer.

int isdigit(char c)
Returns c if this char is a decimal digit, otherwise returns 0.

int isspace (char c)
Returns c if this char is white-space (TAB, CR, LF, SPACE) otherwise returns 0.

unsigned strlen(s)
Returns the Iength of the NULL-terminated string s, not including the NULL.

void assert(e)
This function is used for debugging purposes. This command is placed in strategic
points throughout your code where the correct operation of your code depends on
certain conditions being true. An assert() may be used to ensure that at run time that
the assumption holds true. For example, the following statement checks that the
pointer tp is non-null :

assert(tp);

If at run-time the expression evaluates to false, the program will abort with a
message identifying the source file and the address of the assertion, and the
expression used as an argument.

int CCARGC()
This is a function which, if called at the start of a function with a variable number of
arguments (eg printf()), returns the number of parameters passed to your function.

char *MEIVIPTR_;
This is a global pointer to char, which points to the first free byte following
immediately after your program in memory. This pointer is used by malloc()
and free().

void *calloc(unsigned cnt, unsigned size)
calloc() attempts to obtain a contiguous block of dynamic memory which will hold
'cnt' objects, each of length 'size'. The block will be initialised with zeros. A pointer
to the block is returned if successful, otherwise a NULL pointer is returned.

void free(void *block)
free() deallocates the block of memory at pointer 'block', which was previously
allocated using malloc() or calloc().

void *malloc(unsigned cnt)
As for calloc() above, but for 'cnt' bytes of storage which is left uninitialised.

SAM C Users Manual Page 43

"ctype .h"

These functions are exactly as specified in the ANSI C library CTYPE. They each test the
supplied character for membership is one of several overlapping groups of characters. Note
that all of these functions are defined using the preprocessor directive : #if isascii()

isaipha(c) // returns true if c is in P.-Z or a-z
isupper(c) // returns true if c is in A-Z
islower(c) // returns true if c is in a-z
isxdigit(c) // returns true if c is in 0-9, a-f or A-F
ispunct(c) // returns true if c is non-alphanumeric
isalnum(c) // returns true if c is alphanumeric
isprint(c) // returns true if c is a printable character
isgraph(c) // returns true if c is a non space character
isentrl(c) // returns true if c is a control character
isascii(c) // returns true if c is a 7-bit ascii character
tolower(c) // converts upper case to lower case
toupper(c) // converts lower case to upper case
toascii(c) // converts c to 7-bit ascii (0-127)

"graphics.h"

void moveto(int x, int y)
 Move the graphics pen position to x,y co-ordinates.

void plot(int x, int y)
 Set the point at the co-ordinates specified to the current colour.

void drawto(int x, int y)
 Draw a line from the current graphics pen position to position x,y with the current
 colour.

void line(int x0, int y0, int x1, int y1)
 Draw a line from position x0,y0 to x1,y1 in the current pen colour.

void box(int x, int y, int width, int height)
 Draw an unfilled box (outline only) from position x,y (top left corner) with a
 horizontal 'width' and a vertical 'height'.

void cis(int a)
 If a is NULL, the whole screen is cleared, otherwise only the upper screen is cleared.

put(int x, int y, unsigned data, int mode, unsigned mask)
 Place the sprite data in position x,y (top left corner) in the mode set, and with an
 optional mask. The start address of the data must be in the ranges Ox4000-0x7FFF
 or 0xE000-0xFFFF. The range of modes are :

0 - INVERSE
 1 - XOR
 2 - OR

SAM C Users Manual Page 44

 3 - AND
 4 - OVERWRITE (Default - fastest)
 5 - USING THE MASK

The mask parameter is only available in mode 5. It points to a block of data the
 same size as 'data' and specifies a mask which indicates which areas of the sprite will
 be 'seen'.

unsigned grab(int x, int y, int width, int len)
 This function copies (grabs) a section of the screen and stores it in a buffer in
 memory at the end of screen memory. x,y specify the top left hand corner of the
 block, where width is the horizontal width of the block and len is the vertical height
 of the block. The function returns the size of the block in bytes and MUST NOT
 exceed 8192 bytes! For more details see the Technical Manual (jgrab and jput
 routines).

void fill(int x, int y, int mode)
 This function fills the enclosed area starting at x,y with a pattern set previously by a
 call to fillpattern(). If the pattern is NULL, then a solid fill will commence. Also see
 Technical Manual (jfill routine).

void mode(int x)
 Set the video mode to mode x, where x is in the range 1 to 4.

void open_scr(int scr, int mode)
 Open screen number 'scr' in mode 'mode'.

void display(int scr)
 Display to the user screen number 'scr'.

void close_scr(int scr)
 Close screen number 'scr'.

void palette(int pos, int col)
 Set position 'pos' (0-15) in the current palette (CLUT) with colour number 'col' (0-127).

void allpalette(char pal[16])
 Change all of the colours in the current palette at once. The argument is a pointer to
 an array of 16 colour items (8-bit values) in the range 0-127.

eg pal[0] = 56; pal[l] = 23; ... pal[15] = 31; allpalette(pal);

void triangle(int x0, int y0, int x1, int y1, int x2, int y2)
 Draw a triangle between the given points in order.

SAM C Users Manual Page 45

void setpattern(char *p)
 This function takes, as its argument, the address of some data for the fill pattern
 which will be used by subsequent fill operations. If p is NULL, a solid fill pattern
 will be used (this is the default). The pattern data requires 8 bytes for the top row,
 and is 8 rows deep. ie 128 bytes are required.

void color(int i, int p)
 Set current colour of ink to 'i' and paper to 'p' (Note the spelling of colour as 'color' in
 this function name).

void pen(int i)
 Pen colour is set to 'i'.

void paper(int p)
 Set the paper colour to 'p'.

void setover(int o)
 This is the graphics writing status. The options for 'o' are :

0 - NORMAL
 1 - XOR
 2 - OR
 3 - AND

int getx()
 Returns the x co-ordinate of the graphics pen.

int gety()
 Returns the y co-ordinate of the graphics pen.

void fatpix(int s)
 If 's' is NULL then if the screen is in MODE 3, there will be 512 points per
 horizontal line, otherwise there will be 256 pixels per horizontal line.

void scroll(int x, int y, int width, int len, int direct, int size)
 This function moves part of the screen in a given direction. The screen area must be
 an even number of pixels across. x,y specifies the top left corner of the block to be
 moved of horizontal 'width' and height 'len'. The block will be moved 'size' pixels in
 direction 'direct', where direct may be :

1 - left : 2 - up : 3 - right : 4 – down

void roll(int x, int y, int width, int len, int direct, int size)

As for scroll() but this time with wrap-around.

void border(int c)
 Set the screen border colour to colour 'c' (0-15).

SAM C Users Manual Page 46

"system .h"

void disable()
Disable interrupts.

void enable()
Enable interrupts.

unsigned inp(unsigned port)
Read the CPU 'port' and return the value read.

void outp(unsigned port, char data)
 Write the 'data' to the CPU 'port',

int escape()
Returns 1 if ESC is pressed, otherwise returns 0.

int avail(int a)
Returns the size of the free memory that may be used by alloc() and malloc(). If the
argument is non-zero and there is no memory free, the program will be aborted,
otherwise NULL is returned.

The following commands are identical to their BASIC counterparts.

void poke(unsigned addr, char data)
void dpoke(unsigned addr, char data)
char peek(unsigned addr)
int dpeek(unsigned addr)

int callcode(char a, int bc, int de, int hl, unsigned addr)

The subroutine at address 'addr' will be called. Prior to this, the registers A, BC, DE
and HL will be loaded with their respective values specified in the function
arguments.

void pause(unsigned w)
Wait until w frame interrupts have been received ie waits w/50ths of a second. If
SPACE is pressed, the function is aborted.

int gettime()
Returns the content of the system variable FRAMES (&5C78)

int getsp()
Returns the current stack pointer value.

SAM C Users Manual Page 47

"string .h"

void memcpy(char *d, char *s, unsigned n)
 Copy n bytes of memory starting at 's' to the block starting at 'd'.

void memset(char *s, char c, unsigned n)
 Initialise n bytes of memory starting at 's' with character 'c'.

int memcmp(char *sl, char *s2, unsigned n)
 Compare two blocks of memory, each of size n, byte by byte, block 1 starting at 's1',
 block 2 starting at 's2'. Returns 0 if blocks are equal.

There now follows a series of functions that operate on NULL-terminated strings.

char *strcpy(char *s1, char *s2)
 Copy the contents at 's2' into the buffer pointed to by 's1' including the terminating
 NULL.

char *strncpy(char *s1, char *s2, int n)
 As above, but only copies 'n' characters. N.B. The resulting string may NOT be
 NULL terminated.

char *strcat(char *s1, char *s2)
 Appends the string pointed to by 's2' to the string 's2' and NULL terminates the new string.

char * strncat(char *s1, char *s2, int n)
 As before, but only adds 'n' characters from 's2' to 's1'.

char *strcmp(char *s1, char *s2)
 Compare the two strings pointed to by 's1' and 's2' and returns a number greater than
 or less than zero if the two strings are different, according to whether the byte in 's1'
 at the point at which the two strings differ is numerically greater than or less than the
 byte at that point is 's2'. A zero being returned indicates that the two strings are
 identical.

char *strncmp(char *s1, char *s2, int n)
 As before, but only compares the first 'n' characters in each string.

char *strchr(char *s, int c)
char *strrchr(char *s, int c)

These functions locate an instance of the character 'c' in the string 's'. In the case of
 strchr(), a pointer will be returned to the first occurrence of the character in the
 string, whereas strrchr() searches from the end of the string BACKWARDS towards
 the beginning for the character. A NULL pointer is returned if the character does not
 exist in the string.

SAM C Users Manual Page 48

"string2 .h"

int otoi(char *octstr, int *nbr)
The octal number stored in its character form in the string pointed to by 'octstr' is stored in
its numeric form in 'nbr' upon exit from this function.

int utoi(char *decstr, *nbr)
As above, but the string 'decstr' points to an unsigned decimal number in its
character representation.

int xtoi(char *hexstr, *nbr)
As above, but the string 'hexstr' points to a hexadecimal number in its character
representation.

int dtoi(char *decstr, *nbr)
As above, but the string 'decstr' points to a decimal number in its character
representation.

char *itoo(int nbr, char *str, int sz)
This function is the reverse of otoi() above - the octal number 'nbr' will be placed in
its character representation into the buffer pointed to by 'str', the buffer being of size
'sz'.

char *itou(int nbr, char *str, int sz)
As above, but operates on the unsigned integer stored in 'nbr'.

char *itox(int nbr, char *str, int sz)
As before, but operates on the hexadecimal number stored in 'nbr'.

char *itod(int nbr, char *str, int sz)
As before, but operates on the decimal number stored in 'nbr'.

void reverse(char *str)
Takes a NULL terminated string pointed to by 'str' and reverses the characters in the
string, whilst leaving it NULL-terminated.

void left (char *s)
 Left adjusts and terminates a string

SAM C Users Manual Page 49

"stdlib .h"

void abort(int c)
 Terminates program and gives a BASIC error message c (0 = OK).

int abs(int n)
 Returns the absolute value of 'n' - ie abs(-5) == 5 ==abs(5)

int atexit(void (*fnc)(void))
 Determines a function 'fnc' which will be called at program termination only. Only
 one call to the function, atexit(), is allowed.

int max(int a, int b)
 Returns the greater of the two integer arguments.

int min(int a, int b)
 Returns the lesser of the two integer arguments.

int rand()
 Returns a 16 bit pseudo-random number.

void srand(int seed)
 Starts (re-seeds) the pseudo-random number generator with 'seed'.

void swap(unsigned n, char *s1, char *s2)
 Swaps the two memory blocks, each of size 'n' pointed to by 's1' and 's2'.

void beep(int duration, int pitch)
 Make a sound (beep) of 'duration' length and frequency 'pitch'.

void sound(...)
 This is a variable parameter function which enables you to send values to the
 registers in the sound chip. The parameters are arranged in pairs, the first of each
 pair being the sound register (0 to 31) and the second being the data to send to it (0
 to 255). For more details please see the Technical Manual.

eg sound(27,2, 0,10, 8,16); sound (27,0);

void nosound()
 Resets the sound chip to silence.

int outprn(char c)
 The character 'c' is send directly to the printer, ESC is tested for.

void gdump()
 As for the BASIC command DUMP.

SAM C Users Manual Page 50

void tdump()
 As for the BASIC command DUMPCHR$. Both tdump() and gdump() require the
 dumpld utility to be resident in memory.

"conio .h"

void flash(int. f)
 If 'f' is 0. then the flashing attribute is switched off, if 'f' is 1, then flashing
 colour will start.

void bright(int b)
 As for the previous command, but for the BRIGHT attribute.

void inverse(int i)
 As before but switches the INVERSE attribute.

void over(int o)
 As before but switches the OVER attribute.

void tab(int t)
 The print position on the current line will be set to the argument 't'.

void csize(int x, int y)
 As for the BASIC command CSIZE.

void blocks(int b)
 As for the BASIC command BLOCKS.

void window(int a, int b, int c, int d)
 As for the BASIC command WINDOW.

SAM C Users Manual Page 51

APPENDIX B,

Error Messages
Upon compilation any errors in your source code are indicated in your source by the
introduction of extra lines explaining the error, which will each start with the directive
#error. However, after correction of these errors, these error messages should be removed
before re-compilation. Pressing CNTRL+DEL on the #error line will remove that line from
your source.

The error messages and their meanings.

1. Missing Token ")"
The compiler expects a token, probably a right parenthesis, at this point.

2. No closing #endasm or #endif
You have not matched the start of an assembly code or if block with an appropriate
ending. This test occurs at the end of compilation.

3. Include nested
An include file contains a #include. This is not allowed.

4. Open failure on include file
The included file is not found or corrupt.

5. Bad include name
The name of the included file must be between quotes, <> are NOT allowed.

6. Void must be function of pointer
The void type must be a pointer or a function - not a variable.

7. Can't sizeof function
You cannot take the sizeof a function.

8. Not allowed in switch
You cannot declare a variable in the switch block.

9.Not allowed with goto

10. Not allowed with block-locals
The goto statement may only goto a label inside a block.

11. Must declare first in block
The block-local variables must be first in a block.

SAM C Users Manual Page 52

12. Must assign to char pointer or array
 Can't initialise a variable or a pointer to int by a character string eg
 int *pole = "asd"; // is not allowed!

13. Must assign to pointer
 Cant initialise a pointer to hit by a number.

14. Negative size illegal
 Arrays sizes must be in the range 1 to 32767.

15. Wrong number of Arguments
 The number of arguments submitted to the function does not agree with the function
 prototype.

16. Illegal Function or Declaration
 The compiler shows this error when a corrupt line is compiled. See that no illegal
 characters exist in names (!@#$%^&...) etc.

17. No open paren
 SAM C expects the bodies of functions to start with "{".

18. Illegal argument name
 Check the names of the formal parameters.

19. No coma
 The compiler expects a coma at this point.

20. Type not implemented - int used
 You tried to use one of the unimplemented types - float, long, double.

21. No semi-colon
 The compiler expected a semi-colon at this point.

22. No final }
 The function has not been terminated with "}"

23. Not in switch
 You cannot use the case or default statement outside of a switch.

24. Too many cases
 A maximum of 25 cases is allowed at once.

25. Multiple defaults
 Only one: default per switch is allowed.

SAM C Users Manual Page 53

26. Bad label
 The goto statement has been used with a non label parameter.

27. Not a label
 This label is already used.

28. Illegal symbol
 The symbol contains an incorrect character (@#$%^).

29. Already defined
 A symbol is defined more than once.

30. 1-val required
 An lvalue, ie something which can be assigned to, is required after '&' or on the left
 hand side of an assignment.
 eg 0 - a+b; ++(i+b); --41; etc

31. Global symbol table overflow
 Only 700 symbols are allowed in one program.

32. Local symbol table overflow
 Only 60 local variables are allowed in one program.

33. Too many active loops
 Too many nested whiles, repeats, etc

34. Out of context
 Break, continue, while used in an inappropriate position.

35. No quote, no apostrophe
 You have unmatched quotes or apostrophes on this line.

36. Line too long
 The source line is too big after the macro expansions etc. You should split the line
 or remove remarks from it.

37. No matching #if
 Check the #if usage.

38. Macro name table full
 You may only have a maximum of 256 macros.

39. Macro string queue full
 The body of the macros is too big - remove some macros.

40. Void function can't return value
 You have placed a return() in a function declared as of type void.

SAM C Users Manual Page 54

41. Illegal address
 You cannot take the address of a register variable.

42. Can't subscript
 The object is not an array.

43. Undefined symbol
 This object is not declared in this block.

44. Invalid expression
 This expression is badly formed.

45. Function or void pointer in expression
Pointer to function or void may not be used with an expression.

46. Must be constant expression
The compiler expects a constant expression.

47. Literal queue overflow
Literal string definitions in this function exceed 800 characters. Split a string
declaration.

Out of workspace
The space for the assembler file is full. You can adjust the size of this workspace by
using the menu OPTIONS/PREFERENCES and re-starting the compiler. Don't
forget to save your work to disc first!!!

49. Division by zero
An attempt to divide by zero has been made.

50. Bad option switch
The switcher in the #pragma option directive is not correct. See #pragma for correct values.

51. '-' or '+' use only
Only the sign characters are valid after this switcher.

52. Too big struct/union
Structures and unions may not be bigger than 255 bytes.

53. Syntax error
Probably due to a bad structure or union declaration.

54. Undefined struct/union
This structure/union has not been previously defined.

SAM C Users Manual Page 55

55. Struct/union in itself
Nested structures/unions are not allowed.

56. '.' expected after '..'
The ellipsis symbol must have three dots.

57. Can't initialise
The local variables do not agree with the declaration.

58. Struct/union can't be parameter
 A structure or union can not be used as a parameter - try the address of one of them.

59. Typedef on local not allowed
 The typedef class specifier is only allowed outside of a function

60. Short name
 The name of a global object must be at least 2 characters long.

61. Macro with parameters not allowed
 No description

62. Must be pointer - pointer required
 A pointer is required after a '*' (indirection) operator.

63. Struct/union required
 A structure or union identifier is required before a '.'

64. Struct/union member required
 A structure or union member is required after '.' or '->'

65. Typedef class in expression
 This identifier is for declarations only.

66. Struct/union in expression
 A structure or union may not been used in an expression - only a member can be
 used.

67. Function declared implicit int
 This function has been called without an explicit declaration.

68. Unused variables
 This message is shown only if you have selected extended error checks. Unused
 variables will then be indicated.

SAM C Users Manual Page 56

69. Pointer type mismatch
 You cannot mix the various pointer types together without type casting.

APPENDIX C

Precedence of all C operators.

Most operators associate from left to right, although the unary operators (* , & and -) and ?
associate from right to left.

Highest () [] -> .
 ! ~ ++ -- - (type) * & sizeof

* / %
+ -
<< >>

 < <= > >=
 == !=
 &

^
|
&&

 ||
 ?

= += -= /=

Lowest ,

SAM C Users Manual Page 57

APPENDIX D

This is a list of the files on your SAM C Disc.

CC - BASIC Loader
CC.BIN - The Compiler
CC.INI - Configuration file
CC.MAC - Standard macros for the editor
CC.SCR - Intro screens
runtime.s - The source code of the runtime functions
CCINIT.S - prologue - routine for starting the C programs
DEBUG - debugger code
stdio .h - general macro definitions and headers of built-in functions
graphics.h - The headers file for graphics.c file
graphics.c - See main text of manual for functions
ctype .h - Header file for the ctype .c functions
ctype .c - See main text of manual for functions
string .h - Header file for string .c functions
string .c - See main text of manual for functions
string2 .h - Header file for string2 .c functions
string2 .c - See main text of manual for functions
conio .h - Header file for conio .c functions
conio .c - See main text of manual for functions
system .h - Header file for system .c functions
system .c - See main text of manual for functions
stdlib .h - Header file for stdlib .c functions
stdlib .c - See main text of manual for functions

Some example programs :

HELLO .C // Traditional "Hello world" a la Kernigan & Ritchie
HILBERT .C // The recursion algorithm of the HILBERT CURVE
ECHO .C // Usage of parameters passed from BASIC on the command line
PRIME .C // Calculates prime numbers up to 200.

Executable versions of these files are included too. Note that HELLO and HILBERT are
auto starting files. You can load and execute these files by :

LOAD "HELLO" CODE
LOAD "HILBERT" CODE

The ECHO program requires parameters and is used thus :

LOAD "ECHO" CODE 32768
CALL 32768+3, "FIRST", "SECOND", "THIRD", ... etc

SAM C Users Manual Page 58

APPENDIX E

Library Header Files

CONIO .H

extern void border(int b);
extern void paper(int p);
extern void pen(int i);
extern void flash(int f);
extern void bright(int b);
extern void inverse(int i);
extern void over(int o);
extern void tab(int t);
extern void csize(int x,int y);
extern void blocks(int b);
extern void window(int a,int b,int c,int d);
extern void cls(int a);

CTYPE .H

extern char isalpha(int c);
extern char isupper(int c);
extern char islower(int c);
extern char isxdigit(int c);
extern char ispunct(int c);
extern char isalnum(int c);
extern char isprint(int c);
extern char isgraph(int c);
extern char iscntrl(int c);
extern char isascii(int c);
extern char toupper(int c);
extern char tolower(int c);
extern char toascii(int c);

SAM C Users Manual Page 59

GRAPHICS.H

extern void moveto(int x, int y);
extern void plot(int x, int y);
extern void drawto(int x, int y);
extern void line(int x0, int y0, int x1, int y1);
extern void box(int x, int y, int w, int 1);
extern void cls(int a);
extern void put(int x, int y, unsigned data, int mode);
extern unsigned grab(int x, int y, int w, int l);
extern void fill(int x, int y, int mode);
extern void mode(int m);
extern void open_scr(int scr, int mode);
extern void display(int scr);
extern void close_scr(int scr);
extern void palette(int pos, int col);
extern void allpalettte(int pal);
extern void triangle(int x0, int y0, int x1, int y1, int x2, int y2);
extern int setpattem(int p);
extern void color(int i, int p);
extern void pen(int i);
extern void paper(int p);
extern void setover(int m);
extern int getx();
extern int gety();
extern void fatpix(int a);
extern void scroll(int x, int y, int width, int length, int direct, int size);
extern void roll (int x, int y, int width, int length, int direct, int size);
extern border(int a);

STDIO .H
1

#define EOF (-1)
#define ERR (-2)
#define YES 1
#define NO 0
#define NULL 0
#define CR 13
#define LF 10
#define SPACE ' '
#define stderr 0
#define stdin 0
#define stdout 2
#define stdprn 3

 /*

 ** These function prototypes are built up in the runtime file
 */

SAM C Users Manual Page 60

extern void ungetc(int c);

extern void putchar(int c);
extem void putch(int c);
extern void fputs(char *s, int strm);
extern void puts(char *s);
extern void fputc(int c, int strm);

extern int getchar(void);
extern int getch(void);
extern int getche(void);
extern int fgetc(int strm);
extern char * fgets(char *string, int max, int stream);
extern char * gets(char *string);
extern int kbhit(void);

extern void stream(int stream);
extern void print(char *s);
extern void at(int line, int column);

extern int printf(...); // these six functions are variable
extern int fprintf(...);
extern int sprintf(...);
extern int scanf(...);
extern int fscanf(...);
extern int sscanf(...);

extern char * input(int line, int column, int max);

extern void * MEMPTR_; //pointer to first free byte

extern char * skip(char *string);
extern char * itoa(int value, char *string, int radix);
extern char * itou(int value, char *string, int radix);
extern int atoi(char *s, int radix);
extern int isdigit(int c);
extern int isspace(int c);
extern unsigned strlen(char *s);

extern void assert(int e);
extern void exit(int c);
extern void * calloc(unsigned n, unsigned size);
extern void * malloc(unsigned size);
extern void * free(unsigned block);

SAM C Users Manual Page 61

STDLIB .H

extern void abort(int c);
extern int abs(int x);
extern int atexit(int fnc);
extern void tdump();
extern void gdump();
extern int max (int a, int b);
extern int min (int a, int b);
extern void sort(char *base,int offset, int size, int items, int (*comp)(), int (*swap)());
extern int rand();
extern void srand(int seed);
extern void swap(unsigned width, unsigned from, unsigned to);
extern void beep(int duration, int pitch);
extern void sound(...);
extern void nosound();
extern int is512kb();
extern int outprn(int c);
extern void memset(unsigned from, unsigned size, unsigned val);

STRING .H

extern void * memcpy(char *a,char *b,unsigned c);
extern char * strcpy(char *a,char *b);
extern char * strncpy(char *a,char *b,unsigned c);
extern char * strcat(char *a,char *b);
extern char * strncat(char *a,char *b,unsigned c);
extern int memcmp(char *a,char *b,unsigned c);
extern char * strcmp(char *a,char *b);
extern char * strncmp(char *a,char *b,unsigned c);
// extern void * memchr(a,b);
// extern unsigned strspn(a,b);
// extern char * strstr(a,b);
// extern char * strtok(a,b);
extern void * memset(char *a,int b,unsigned c);
extern char * strchr(char *a,int b);
extern char * strrchr(char *a,int b);

SAM C Users Manual Page 62

STRING2 .H

extern int otoi(char *octstr, int nbr);
extern int utoi(char *decstr, int nbr);
extern int xtoi(char *hexstr, int nbr);
extern int dtoi(char *decstr, int nbr);

extern char * itoo(int nbr, char *str, int sz);
extern char * itou(int nbr, char *str, int sz);
extern char * itox(int nbr, char *str, int sz);
extern char * itod(int nbr, char *str, int sz);

extern void reverse(char *s);
extern void left(char *s);

SYSTEM .H

extern void disable();
extern void enable();

extern unsigned inp(unsigned p);
extern unsigned outp(unsigned p,int v);

extern int escape();
extern int avail();

extern void poke(unsigned a, char b);
extern void dpoke(unsigned a, int b);
extern char peek(unsigned a);
extern int dpeek(unsigned a);
extern int callcode (int a,int b,int d,int h,unsigned adr);

extern void pause(int c);
extern int gettime();
extern int getsp();

SAM C Users Manual Page 63

NOTES

The readme file from then Sam C disk displays the following message;

In order to successfully compile the news.c and some other flies it may be necessary to turn the smart
Compiling off. This is the first option in the Options – Compile menu.

We would also recommend using MasterDOS for programming in SAM C.

SAM C Users Manual Page 64

NOTES

This Sam C Manual was OCRed with Omnipage Pro 14
& MS Word 2003. The PDF document was compiled with

JAWs Creator pdf version 6.3
by Steve Parry-Thomas 17 Jan 2005

For SAM Coupé uses everywhere.

www.samcoupe-pro-dos.co.uk

SAM C Users Manual PDF version 1 – 17 Jan 2005

We plan to release (both commercially and in the public domain) a wide range of C libraries, sources and
products developed in C. If you did not buy your copy of SAM C direct from FRED Publishing, please
get in touch so we can keep you informed of new developments.

In addition to C, FRED Publishing produce a wide range of games and utilities - ranging from the arcade
hit Lemmings to the exceptional art package SAMPaint. For details on these, or any of the dozens of
other pieces of software we stock please send a SAE to the address below.

First produced in June 1990, FRED disc magazine has gone on to become the biggest and best disc
magazine for the SAM. Still produced monthly with a huge variety of items each month (news,
reviews, games, demos, utilities, screens, music ...) it is available for £2 an issue or £20 for 12 months
subscription which entitles you to further discounts off FRED software.

Requests for details / orders to :-

FRED Publishing,
40 Roundyhill,
Monifieth,
Dundee,
DD5 4RZ Tel : 01382 535963

http://www.samcoupe-pro-dos.co.uk/

	CONTENTS
	Preface
	Introduction
	Getting Started
	First Steps In C
	Integrated Development Environment (IDE)
	File
	File
	Load [F3]
	New
	Save [F2]
	Save as
	Merge
	Print
	Get Info
	Import
	Export
	Directory
	Drive
	Quit

	Edit
	Entering Source
	Block Settings
	Block Operations
	Find & Replace
	Put
	Write
	Goto
	cAlculate
	Inverse Colours
	Macros

	Debugger
	Listings, previews ...
	Block moving and filling
	Disc commands
	Searching
	Trace, breakpoint
	Execute program
	Exit from debugger
	Compile

	Options
	Compiler
	Merge start code
	Stack pointer
	ORG address
	East code
	C src. as remark
	Label prefix
	Beep if error
	Optimise size
	Relative jumps
	Unsigned char
	Disc for output
	Printer
	Page length
	Margin
	Compressed
	Left feed
	Form Feed

	Preferences
	Mouse
	Text size
	Workspace
	Ink
	Paper
	SVision
	Ramdisc
	Font no.
	Autoindent
	Tab size
	Save
	Load
	Reset
	Save
	Browser
	Objects
	Protocol
	Symbols
	CodeView

	The C Language
	 Introduction
	 Remarks
	 Identifiers
	 Keywords
	Constants
	The size of standard types
	Register modifier
	Automatic type conversion
	Expressions
	Declarations
	Variable

	Function modifier _interrupt
	Initialisation
	Compound Statement
	Extern modifier
	The pre-processor
	#define
	#include
	#ifdeclared, #ifdef, #ifndef, #if
	#asm, #endasm
	#pragma

	Low-level communication
	The Stack Pointer and Function Interface
	Using the registers
	Memory Sharing

	APPENDIX A
	The Standard SAM C Libraries
	"stdio .h"
	int getc(), int getch()
	void ungetc(int c, int strm)
	int getchar()
	int fgetc(int strm)
	void putc(c), void putch(c)
	int getche()
	int kbhit()
	char *gets(char *s)
	char *fgets(char *s, int max, int strm)
	void stream(int strm)
	void print(char *s)
	void fputs(char *s, int strm)
	void puts(char *s)
	void fputc(int c, int strm)
	void printf(char *cntrl, ...)
	void fprintf(int strm, char *cntrl, ...)
	void sprintf(char *s, char *cntrl, ...)
	int scanf(char *cntrl, ...)
	int fscanf(int strm, char *cntrl,)
	int sscanf(char *s, char *cntrl, ...)
	char *input(int line, int column, int max)
	void at(int line, int column)
	void exit(value)
	char *itoa(int value, char *string, int radix)
	char *itou(int value, char *string, int radix)
	int isdigit(char c)
	int isspace (char c)
	unsigned strlen(s)
	void assert(e)
	int CCARGC()
	char *MEIVIPTR_;
	void *calloc(unsigned cnt, unsigned size)
	void free(void *block)
	void *malloc(unsigned cnt)

	"ctype .h"
	"graphics.h"
	void moveto(int x, int y)
	void plot(int x, int y)
	void drawto(int x, int y)
	void line(int x0, int y0, int x1, int y1)
	void box(int x, int y, int width, int height)
	void cis(int a)
	put(int x, int y, unsigned data, int mode, unsigned mask)
	unsigned grab(int x, int y, int width, int len)
	void fill(int x, int y, int mode)
	void mode(int x)
	void open_scr(int scr, int mode)
	void display(int scr)
	void close_scr(int scr)
	void palette(int pos, int col)
	void allpalette(char pal[16])
	void triangle(int x0, int y0, int x1, int y1, int x2, int y2)
	void setpattern(char *p)
	void color(int i, int p)
	void pen(int i)
	void paper(int p)
	void setover(int o)
	int getx()
	int gety()
	void fatpix(int s)
	void scroll(int x, int y, int width, int len, int direct, int size)
	void border(int c)

	"system .h"
	void disable()
	void enable()
	unsigned inp(unsigned port)
	void outp(unsigned port, char data)
	int escape()
	int avail(int a)
	int callcode(char a, int bc, int de, int hl, unsigned addr)
	void pause(unsigned w)
	int gettime()
	int getsp()

	"string .h"
	void memcpy(char *d, char *s, unsigned n)
	void memset(char *s, char c, unsigned n)
	int memcmp(char *sl, char *s2, unsigned n)
	char *strcpy(char *s1, char *s2)
	char *strncpy(char *s1, char *s2, int n)
	char *strcat(char *s1, char *s2)
	char * strncat(char *s1, char *s2, int n)
	char *strcmp(char *s1, char *s2)
	char *strncmp(char *s1, char *s2, int n)
	char *strchr(char *s, int c)

	"string2 .h"
	int otoi(char *octstr, int *nbr)
	int utoi(char *decstr, *nbr)
	int xtoi(char *hexstr, *nbr)
	int dtoi(char *decstr, *nbr)
	char *itoo(int nbr, char *str, int sz)
	char *itou(int nbr, char *str, int sz)
	char *itox(int nbr, char *str, int sz)
	char *itod(int nbr, char *str, int sz)
	void reverse(char *str)
	void left (char *s)

	"stdlib .h"
	void abort(int c)
	int abs(int n)
	int atexit(void (*fnc)(void))
	int max(int a, int b)
	int min(int a, int b)
	int rand()
	void srand(int seed)
	void swap(unsigned n, char *s1, char *s2)
	void beep(int duration, int pitch)
	void sound(...)
	void nosound()
	int outprn(char c)

	"conio .h"
	void flash(int. f)
	void bright(int b)
	void inverse(int i)
	void over(int o)
	void tab(int t)
	void csize(int x, int y)
	void blocks(int b)
	void window(int a, int b, int c, int d)

	Error Messages
	1. Missing Token ")"
	2. No closing #endasm or #endif
	3. Include nested
	4. Open failure on include file
	5. Bad include name
	6. Void must be function of pointer
	7. Can't sizeof function
	8. Not allowed in switch
	9.Not allowed with goto
	10. Not allowed with block-locals
	11. Must declare first in block
	12. Must assign to char pointer or array
	13. Must assign to pointer
	14. Negative size illegal
	15. Wrong number of Arguments
	16. Illegal Function or Declaration
	17. No open paren
	18. Illegal argument name
	19. No coma
	20. Type not implemented - int used
	21. No semi-colon
	22. No final }
	23. Not in switch
	24. Too many cases
	25. Multiple defaults
	26. Bad label
	28. Illegal symbol
	29. Already defined
	30. 1-val required
	31. Global symbol table overflow
	32. Local symbol table overflow
	33. Too many active loops
	34. Out of context
	35. No quote, no apostrophe
	36. Line too long
	37. No matching #if
	39. Macro string queue full
	41. Illegal address
	42. Can't subscript
	43. Undefined symbol
	44. Invalid expression
	45. Function or void pointer in expression
	46. Must be constant expression
	47. Literal queue overflow
	Out of workspace
	49. Division by zero
	50. Bad option switch
	51. '-' or '+' use only
	52. Too big struct/union
	53. Syntax error
	54. Undefined struct/union
	55. Struct/union in itself
	56. '.' expected after '..'
	57. Can't initialise
	58. Struct/union can't be parameter
	59. Typedef on local not allowed
	60. Short name
	61. Macro with parameters not allowed
	62. Must be pointer - pointer required
	63. Struct/union required
	64. Struct/union member required
	65. Typedef class in expression
	66. Struct/union in expression
	67. Function declared implicit int
	68. Unused variables
	69. Pointer type mismatch

	APPENDIX C
	APPENDIX D
	APPENDIX E
	Library Header Files
	CONIO .H
	CTYPE .H
	GRAPHICS.H
	STDIO .H
	STDLIB .H
	STRING .H
	STRING2 .H
	SYSTEM .H

	NOTES

